miércoles, 7 de septiembre de 2011

Acciones y sus efectos sobre los sistemas estructurales.

Clasificación:
Atendiendo los conceptos de seguridad estructural y de los criterios de diseño, la clasificación mas racional de las acciones se hace en base a la variación de su intensidad con el tiempo. Se distinguen así los siguientes tipos de acciones:
Acciones permanentes.
Son las que actúan en forma continua sobre la estructura y cuya intensidad pude considerarse que no varía con el tiempo. Pertenecen a este grupo las siguientes.
1.- Cargas muertas debidas al propio peso de la estructura y al de los elementos no estructurales de la construcción
2.- Empujes estáticos de líquidos y tierras
3.- Deformaciones y desplazamientos debido al esfuerzo de efecto del pre-esfuerzo y a movimientos diferenciales permanentes en los apoyos
4.- Contracción por fraguado del concreto, flujo plástico del concreto, etc.
Acciones variables.
Son aquellas que inciden sobre la estructura con una intensidad variable con el tiempo, pero que alcanzan valores importantes durante lapsos grandes
Se pueden considerar las siguientes:
1.- Cargas vivas, o sea aquellas que se deben al funcionamiento propio de la construcción y que no tienen carácter permanente
2.- Cambios de temperaturas
3.- Cambios volumétricos
Acciones accidentales.
Son aquellas que no se deben al funcionamiento normal de la construcción y que puede tomar valores significativos solo durante algunos minutos o segundos, a lo mas horas en toda la vida útil de la estructura.
Se consideran las siguientes
1.-Sismos
2.-Vientos
3.-Oleajes
4.-Explosiones
Para evaluar el efecto de las acciones sobre la estructura requerimos modelar dichas acciones como fuerzas concentradas, lineales o uniformemente distribuidas.
Si la acción es de carácter dinámico podemos proponer un sistema de fuerzas equivalentes o una excitación propiamente dinámica.

lunes, 5 de septiembre de 2011

Modulo de elasticidad del concreto y el acero

 Un modulo elástico es un tipo de constante elástica que relaciona una medida relacionada con la tensión y una medida relacionada con la deformación.
Los materiales elásticos isótropos quedan caracterizados por un módulo elástico y un coeficiente elástico (o razón entre dos deformaciones). Es decir, conocido el valor de uno de los módulos elásticos y del coeficiente de Poisson se pueden determinar los otros módulos elásticos. Los materiales ortotrópos o anisótropos requieren un número de constantes elásticas mayor.

Tabla de Modulos de Elasticidad


Material
Valor Modulo de Elasticidad aproximado (Kg/cm2)
Mamposteria de ladrillo

E = 30000 - 50000
En Mexico, se puede calcular segun las NTC de mamposteria, de la siguiente manera:
  Para mampostería de tabique de barro y otras piezas, excepto las de concreto:
Em = 600 fm* para cargas de corta duración
Em = 350 fm* para cargas sostenidas

fm*   resistencia de diseño a compresión de la mampostería, referida al área bruta.

Maderas duras (en la dirección paralela a las fibras)
 
E = 100000 - 225000
Maderas blandas (en la dirección paralela a las fibras
 
E = 90000 - 110000
Acero
 
E = 2100000
Hierro de fundición
 
E = 1000000
Vidrio
 
E = 700000
Aluminio
 
E = 700000
Concreto (Hormigon) de Resistencia:
E =
110 Kg/cm2.
215000
130 Kg/cm2.
240000
170 Kg/cm2.
275000
210 Kg/cm2.
300000
300 Kg/cm2.
340000
380 Kg/cm2.
370000
470 Kg/cm2.
390000


Rocas:
E =
Basalto
800000
Granito de grano grueso y en general
100000 - 400000
Cuarcita
100000 - 450000
Marmol
800000
Caliza en general
100000 - 800000
Dolomia
100000 - 710000
Arenisca en general
20000 - 636000
Arenisca calcárea
30000 - 60000
Arcilla esquistosa
40000 - 200000
Gneis
100000 - 400000

miércoles, 31 de agosto de 2011

Losa reticular


Este tipo de losas se elabora a base de un sistema de entramado de trabes cruzadas que forman una retícula, dejando huecos intermedios que pueden ser ocupados permanentemente por bloques huecos o materiales cuyo peso volumétrico no exceda de 900kg/m y sean capaces 
de resistir una carga concentrada de una tonelada.

La combinación de elementos prefabricados de concreto simple en forma de cajones con nervaduras de concreto reforzado colado en el lugar 
que forman una retícula que rodea por sus cuatro costados a los bloques prefabricados.

También pueden colocarse, temporalmente a manera de cimbra para el colado de las trabes, casetones de plástico prefabricados que una vez fraguado el concreto deben retirarse y lavarse para usos posteriores. Con lo que resulta una losa liviana, de espesor uniforme.


Entre sus ventajas se encuentra:

• Los esfuerzos de flexión y corte son relativamente bajos y repartidos en grandes areas.• Permite colocar muros divisorios libremente.
• Se puede apoyar directamente sobre las columnas sin necesidad de trabes de carga entre columna y columna.
• Resiste fuertes cargas concentradas, ya que se distribuyen a areas muy grandes a través de las nervaduras cercanas de ambas direcciones.
• Las losas reticulares son más livianas y más rígidas que las losas macizas.
• El volumen de los colados en la obra es reducido.
• Mayor duración de la madera de cimbra, ya que sólo se adhiere a las nervaduras, y puede utilizarse más veces
• Este sistema reticular celulado da a las estructuras un aspecto agradable de ligereza y esbeltez.
• El entrepiso plano por ambas caras le da un aspecto mucho más limpio a la estructura y permite aprovechar la altura real que hay de piso a techo para el paso de luz natural. La superficie para acabados presenta características óptimas para que le yeso se adhiera perfectamente, dejando una superficie lisa, sin ocasionar grietas.
• Permite la modulación con claros cada vez mayores, lo que significa una reducción considerable en el número de columnas.
• La construcción de este tipo de losa proporciona un aislamiento acústico y térmico.
• La ausencia de trabes a la vista elimina el falso plafón.
• Permite la presencia de voladizos de las losas, que alcanzan sin problema 3 y 4 metros.
• Mayor rigidez de los entrepisos, gran estabilidad a las cargas dinámicas, soporta cargas muy fuertes.
• Su aplicación es muy variada y flexible, bien puede utilizarse en edificios de pocos niveles, ó grandes edificaciones, para construcciones de índole público, escuelas, centros comerciales, hospitales, oficinas, multifamiliares, bodegas, almacenes, construcciones industriales ó casas económicas en serie o residencias particulares.



Los cajones prefabricados se colocan sobre una cimbra plana, dispuestos por pares, uno de fondo y otro de tapa que forman una celda interior cerrada, en el espacio que queda entre los bloques se coloca el refuerzo y se cuela el concreto de las nervaduras. Los cajones y las nervaduras pasan a formar nervaduras de sección doble T, que son elementos resistentes del entrepiso reticular celulado. Para que las secciones doble T sean estructuralmente correctas, debe admitirse un monolitismo absoluto entre los elementos prefabricas y el concreto colado en el lugar.
Los bloques pre colados se fabrican en tres peraltes diferentes: 20, 17.5 y 12.5centímetros. En planta las dimensiones estándar son: 85 x 85cm, 85 x 75cm y 65 x 65cm. Combinando varias medidas de bloques haciendo variar ligeramente el ancho de las nervaduras, se puede cubrir cualquier claro. El concreto utilizado en la fabricación es de una resistencia mínima de 140kg/cm a los 28 días. El espesor promedio de la pared del bloque es de 1.5cm y el fondo de 1.5 a 3 cm.






domingo, 28 de agosto de 2011

Momento de fuerza
En mecánica newtoniana, se denomina momento de una fuerza (respecto a un punto dado) a una magnitud (pseudo)vectorial, obtenida como producto vectorial del vector de posición del punto de aplicación de la fuerza con respecto al punto al cual se toma el momento por la fuerza, en ese orden. También se le denomina momento dinámico o sencillamentemomento.
Ocasionalmente recibe el nombre de torque a partir del término inglés (torque), derivado a su vez del latín torquere (retorcer). Este término intenta introducirse en la terminología española, bajo las formas de torque o torca, aunque con escasa fortuna, ya que existe la denominación par que es la correcta en español.

Momento angular

El momento angular o momento cinético es una magnitud física importante en todas las teorías físicas de la mecánica, desde la mecánica clásica a la mecánica cuántica, pasando por la mecánica relativista. Su importancia en todas ellas se debe a que está relacionada con las simetrías rotacionales de los sistemas físicos. Bajo ciertas condiciones de simetría rotacional de los sistemas es una magnitud que se mantiene constante con el tiempo a medida que el sistema evoluciona, lo cual da lugar a una ley de conservación conocida como ley de conservación del momento angular. El momento angular para un cuerpo rígido que rota respecto a un eje, es la resistencia que ofrece dicho cuerpo a la variación de la velocidad angular. En el Sistema Internacional de Unidades el momento angular se mide en kg·m²/s.
Esta magnitud desempeña respecto a las rotaciones un papel análogo al momento lineal en las traslaciones. Sin embargo, eso no implica que sea una magnitud exclusiva de lasrotaciones; por ejemplo, el momento angular de una partícula que se mueve libremente con velocidad constante (en módulo y dirección) también se conserva.
El nombre tradicional en español es momento cinético,1 pero por influencia del inglés angular momentum hoy son frecuentes momento angular y otras variantes como cantidad de movimiento angular o ímpetu angular.
Esfuerzo cortante
El esfuerzo cortante, de corte, de cizalla o de cortadura es el esfuerzo interno o resultante de las tensiones paralelas a la sección transversal de un prisma mecánico como por ejemplo una viga o un pilar. Se designa variadamente como T, V o Q
Este tipo de solicitación formado por tensiones paralelas está directamente asociado a la tensión cortante. Para una pieza prismática se relaciona con la tensión cortante mediante la relación:

Tensión cortante
La tensión cortante o tensión de corte es aquella que, fijado un plano, actúa tangente al mismo. Se suele representar con la letra griega tau  \tau\  . En piezas prismáticas, las tensiones cortantes aparecen en caso de aplicación de un esfuerzo cortante o bien de un momento torsor. En piezas alargadas, como vigas y pilares, el plano de referencia suele ser un paralelo a la sección transversal (i.e., uno perpendicular al eje longitudinal). A diferencia del esfuerzo normal, es más difícil de apreciar en las vigas ya que su efecto es menos evidente.

Torsión mecánica
En ingeniería, torsión es la solicitación que se presenta cuando se aplica un momento sobre el eje longitudinal de un elemento constructivo oprisma mecánico, como pueden ser ejes o, en general, elementos donde una dimensión predomina sobre las otras dos, aunque es posible encontrarla en situaciones diversas.
La torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la pieza deja de estar contenida en el plano formado inicialmente por las dos curvas. En lugar de eso una curva paralela al eje se retuerce alrededor de él (ver torsión geométrica).
El estudio general de la torsión es complicado porque bajo ese tipo de solicitación la sección transversal de una pieza en general se caracteriza por dos fenómenos:
1.    Aparecen tensiones tangenciales paralelas a la sección transversal. Si estas se representan por un campo vectorial sus líneas de flujo"circulan" alrededor de la sección.
2.    Cuando las tensiones anteriores no están distribuidas adecuadamente, cosa que sucede siempre a menos que la sección tenga simetría circular, aparecen alabeos seccionales que hacen que las secciones transversales deformadas no sean planas.
El alabeo de la sección complica el cálculo de tensiones y deformaciones, y hace que el momento torsor pueda descomponerse en una parte asociada a torsión alabeada y una parte asociada a la llamada torsión de Saint-Venant. En función de la forma de la sección y la forma del alabeo, pueden usarse diversas aproximaciones más simples que el caso general.